
1

© Copyright by Deitel

Chapter 2 - Introduction to C
Programming

Outline
2.1 Introduction
2.2 A Simple C Program: Printing a Line of Text
2.3 Another Simple C Program: Adding Two Integers
2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and Relational Operato rs
2.7 Data Types and Variables (補充資料補充資料補充資料補充資料)

2

© Copyright by Deitel

Objectives

• In this chapter, you will learn:
– To be able to write simple computer programs in C.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

– To understand computer memory concepts.

– To be able to use arithmetic operators.

– To understand the precedence (順序， order of evaluation)
of arithmetic operators.

– To be able to write simple decision making statements.

– To understand C’s fundamental and modified data types

3

© Copyright by Deitel

2.1 Introduction

• C programming language
– Structured and disciplined approach to program design

• Structured programming
– Introduced in chapters 3 and 4

– Used throughout the remainder of the book

• Steps to write a program
– Define the problem to be solved with the computer

– Design the program’s input/output (what the user should
give (Data)/see (Information))

– Break the problem into logical steps to achieve this output

– Write the program (with an editor)

– Compile the program

– Test the program to make sure it performs as you expected

4

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

• Comments (註解)
– Text surrounded by /* and */ is ignored by computer
– Text followed by // is ignored by computer (C++ style)
– Used to describe program

• #include <stdio.h>#include <stdio.h>#include <stdio.h>#include <stdio.h>
– Preprocessor directive (前置處裡器指令)

• Tells computer to load contents of a certain file (header files, 標頭檔)
– <stdio.h> allows standard input/output operations

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } /* end function main */

Welcome to C!

5

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {
8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } /* end function main */

Welcome to C!

• intintintint main()main()main()main()
– C (and C++) programs contain one or more functions, exactly one of

which must be main (每個 C 程式必定有一個main() 函數，而且只能
有一個)

– Parenthesis () is used to indicate a function
– int means that main "returns" an integer value
– Braces ({ and }) indicate a block (程式區塊)

• The bodies of all functions must be contained in braces

6

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

• printf("Welcome to C!printf("Welcome to C!printf("Welcome to C!printf("Welcome to C!\\\\n");n");n");n");

– Instructs computer to perform an action
• Specifically, prints the string of characters within quotes (" ")

– Entire line is called a statement (敘述句)
• All statements must end with a semicolon (;, also known as the

statement terminator)

– Argument (參數，引數)
• function(argument), e.g., printf (“Welcome to C!\n”);

– Escape character (\, 跳脫字元)
• Indicates that printf should do something out of the ordinary

• \n is the newline character

7

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

8

© Copyright by Deitel

2.2 A Simple C Program:
Printing a Line of Text

• return 0;return 0;return 0;return 0;

– A way to exit a function

– return 0, in this case, means that the program is terminated
normally

• Right brace}}}}
– Indicates end of main has been reached

• Linker
– When a function is called, linker locates it in the library

– Inserts it into object program

– If function name is misspelled, the linker will produce an
error because it will not be able to find function in the
library

9

© Copyright by Deitel

Basics of a Typical C Program Development
Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

10

© Copyright by Deitel

Basics of a Typical C Program Development
Environment

• Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Outline
11

© Copyright by Deitel

1 /* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c/* Fig. 2.3: fig02_03.c

2 Printing on one line with two printf statements */Printing on one line with two printf statements */Printing on one line with two printf statements */Printing on one line with two printf statements */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{

8 printf(printf(printf(printf("Welcome ""Welcome ""Welcome ""Welcome "););););

9 printf(printf(printf(printf("to C!"to C!"to C!"to C!\\\\n"n"n"n"))));;;;

10

11 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

12

13 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

fig02_03.c

Program OutputWelcome to C!

Outline
12

© Copyright by Deitel

fig02_04.c

Program Output
Welcome
to
C!

1 /* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c/* Fig. 2.4: fig02_04.c

2 Printing multiple lines with a single printf */Printing multiple lines with a single printf */Printing multiple lines with a single printf */Printing multiple lines with a single printf */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{

8 printf(printf(printf(printf("Welcome"Welcome"Welcome"Welcome\\\\nnnntotototo\\\\nnnnC!C!C!C!\\\\n"n"n"n"););););

9

10 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

11

12 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

13

© Copyright by Deitel

Debug the Following Source Code

Identify and correct the errors in the following program:

1 /* Fig. 2.1: fig02_01e.c
2 A first program in C */
3 #include <stdio.h>;
4
5 /* function main begins program execution */
6 int main();
7 {
8 print("Welcome to C!\n")
9
10 return 0; // indicate that program ended successfully
11
12 /* end function main */

Ans:

3 #include <stdio.h>
6 int main()
8 printf("Welcome to C!\n");
12 } /* end function main */

14

© Copyright by Deitel

Debug the Following Source Code

Identify and correct the errors in the following program:

1 // Fig. 2.1: fig02_01e.c
2 A first program in C */
3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int Main()
7 {
8 printf(Welcome to C!\n);
9
10 return 0; /* indicate that program ended successfully */
11 }
12 /* end function main */

Ans:

1 /* Fig. 2.1: fig02_01e.c
2 int main()
8 printf("Welcome to C!\n");

Outline
15

© Copyright by Deitel

Another
Program –
Adding Two
Integers

fig02_05.c

1 /* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c/* Fig. 2.5: fig02_05.c

2 Addition program */Addition program */Addition program */Addition program */

3 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

4

5 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

6 intintintint main() main() main() main()

7 {{{{

8 intintintint integer1; integer1; integer1; integer1; /* first number to be input by user *//* first number to be input by user *//* first number to be input by user *//* first number to be input by user */

9 intintintint integer2; integer2; integer2; integer2; ////* second number to be input by user */* second number to be input by user */* second number to be input by user */* second number to be input by user */

10 intintintint sum; sum; sum; sum; /* variable in which sum will be stored *//* variable in which sum will be stored *//* variable in which sum will be stored *//* variable in which sum will be stored */

11

12 printf(printf(printf(printf("Enter first integer"Enter first integer"Enter first integer"Enter first integer\\\\n"n"n"n");););); /* prompt *//* prompt *//* prompt *//* prompt */

13 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &integer1); , &integer1); , &integer1); , &integer1); /* read an integer *//* read an integer *//* read an integer *//* read an integer */

14

15 printf(printf(printf(printf("Enter second integer"Enter second integer"Enter second integer"Enter second integer\\\\n"n"n"n");););); /* prompt *//* prompt *//* prompt *//* prompt */

16 scanf(scanf(scanf(scanf("%d""%d""%d""%d", &integer2); , &integer2); , &integer2); , &integer2); /* read an integer *//* read an integer *//* read an integer *//* read an integer */

17

18 sum = integer1 + integer2; sum = integer1 + integer2; sum = integer1 + integer2; sum = integer1 + integer2; /* assign total to sum *//* assign total to sum *//* assign total to sum *//* assign total to sum */

19

20 printf(printf(printf(printf("Sum is %d"Sum is %d"Sum is %d"Sum is %d\\\\n"n"n"n", sum); , sum); , sum); , sum); /* print s/* print s/* print s/* print sum */um */um */um */

21

22 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

23

24 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

宣告整數變數

int integer1;
變數型態 變數名稱;

從鍵盤讀取整數數值，並放
到變數 integer1 的位置，注
意變數名稱前要加 &

計算部份，將 integer1、
integer2 相加後的結果給
sum

Outline
16

© Copyright by Deitel

Program Output

Enter first integer
45
Enter second integer
72
Sum is 117

17

© Copyright by Deitel

2.3 Another Simple C Program:
Adding Two Integers

• As before
– Comments, #include <stdio.h> and int main()

• intintintint integer1,integer1,integer1,integer1, integer2,integer2,integer2,integer2, sum;sum;sum;sum;

– Definition of variables
• Variables: locations in memory where a value can be stored

– int means the variables can hold integers (-1, 3, 0, 47)

– Variable names (identifiers)
• integer1, integer2, sum

• Identifiers: consist of letters, digits (cannot begin with a digit)
and underscores(____)

– Case sensitive

– Definitions appear before executable statements
• If an executable statement references and undeclared variable

it will produce a syntax (compiler) error

18

© Copyright by Deitel

2.3 Another Simple C Program:
Adding Two Integers

• scanf("%d", &integer1);scanf("%d", &integer1);scanf("%d", &integer1);scanf("%d", &integer1);

– Obtains a value from the user
• scanf uses standard input (usually keyboard)

– This scanf statement has two arguments
• %d - indicates data should be a decimal integer

• &integer1 - location in memory to store variable (也就是，指
向整數 integer1 在記憶體的位置)

• & is confusing in beginning – for now, just remember to
include it with the variable name in scanf statements

– It will be discussed later (i.e., concept of pointer)

– When executing the program the user responds to the scanf
statement by typing in a number, then pressing the enter
(return) key

19

© Copyright by Deitel

2.3 Another Simple C Program:
Adding Two Integers

• ==== (assignment operator)
– Assigns a value to a variable

– Is a binary operator (has two operands)
sum = variable1 + variable2;

sum gets variable1 + variable2;

– Variable receiving value on left

• printf("Sum is %dprintf("Sum is %dprintf("Sum is %dprintf("Sum is %d\\\\n", sum);n", sum);n", sum);n", sum);

– Similar to scanf
• %d means decimal integer will be printed

• sum specifies what integer will be printed

– Calculations can be performed inside printf statements
printf("Sum is %d\n", integer1 + integer2);

20

© Copyright by Deitel

2.4 Memory Concepts

• Variables
– Variable names correspond to locations in the computer's

memory

– Every variable has a name, a type, a size and a value

– Whenever a new value is placed into a variable (through
scanf, for example), it replaces (and destroys) the previous
value

– Reading variables from memory does not change them

21

© Copyright by Deitel

2.4 Memory Concepts

•A visual representation

22

© Copyright by Deitel

2.5 Arithmetic

• Arithmetic calculations
– Use * for multiplication and / for division

– Integer division truncates remainder
• 7 / 5 evaluates to 1

– Modulus operator(%) returns the remainder
• 7 % 5 evaluates to 2

• Operator precedence (順序)
– Some arithmetic operators act before others (e.g.,

multiplication before addition)
• Use parenthesis when needed

– Example: Find the average of three variables a, b and c
• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

23

© Copyright by Deitel

2.5 Arithmetic
24

© Copyright by Deitel

2.5 Arithmetic

25

© Copyright by Deitel

2.6 Decision Making: Equality and
Relational Operators

• Executable statements
– Perform actions (calculations, input/output of data)
– Perform decisions

• May want to print "pass" or "fail" given the value of a test
grade

• ifififif control statement
– Simple version in this section, more detail later
– If a condition is true, then the body of the if statement

executed
• 0 is false, non-zero is true

– Control always resumes after the if structure

• Keywords
– Special words reserved for C
– Cannot be used as identifiers or variable names

26

© Copyright by Deitel

2.6 Decision Making: Equality and
Relational Operators

Outline
27

© Copyright by Deitel

fig02_13.c (Part 1
of 2)

1 /* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c/* Fig. 2.13: fig02_13.c

2 Using if statements, relationalUsing if statements, relationalUsing if statements, relationalUsing if statements, relational

3 operators, and equality operators */operators, and equality operators */operators, and equality operators */operators, and equality operators */

4 #include#include#include#include <stdio.h> <stdio.h> <stdio.h> <stdio.h>

5

6 /* function main begins program execution *//* function main begins program execution *//* function main begins program execution *//* function main begins program execution */

7 intintintint main() main() main() main()

8 {{{{

9 intintintint num1 num1 num1 num1;;;; /* first nu/* first nu/* first nu/* first number to be read from user */mber to be read from user */mber to be read from user */mber to be read from user */

10 intintintint num2; num2; num2; num2; /* second number to be read from user *//* second number to be read from user *//* second number to be read from user *//* second number to be read from user */

11

12 printf(printf(printf(printf("Enter two integers, and I will tell you"Enter two integers, and I will tell you"Enter two integers, and I will tell you"Enter two integers, and I will tell you\\\\n"n"n"n"););););

13 printf(printf(printf(printf("the relationships they satisfy: ""the relationships they satisfy: ""the relationships they satisfy: ""the relationships they satisfy: "););););

14

15 scanf(scanf(scanf(scanf("%d%d""%d%d""%d%d""%d%d", &num1,, &num1,, &num1,, &num1, &num2); &num2); &num2); &num2); /* read two integers *//* read two integers *//* read two integers *//* read two integers */

16

17 ifififif (num1 == num2) { (num1 == num2) { (num1 == num2) { (num1 == num2) {

18 printf(printf(printf(printf("%d is equal to %d"%d is equal to %d"%d is equal to %d"%d is equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

19 } } } } /* end if *//* end if *//* end if *//* end if */

20

21 ifififif ((((num1 != num2num1 != num2num1 != num2num1 != num2) {) {) {) {

22 printf(printf(printf(printf("%d is not equal"%d is not equal"%d is not equal"%d is not equal to %d to %d to %d to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

23 } } } } /* end if *//* end if *//* end if *//* end if */

24

if(條件式條件式條件式條件式)

{

statement 1;

statement 2;

. . .

如果合乎條件的話如果合乎條件的話如果合乎條件的話如果合乎條件的話，，，，

就做大括號中的部份就做大括號中的部份就做大括號中的部份就做大括號中的部份；；；；

}

或者或者或者或者，，，，如果只有一個如果只有一個如果只有一個如果只有一個 statement 時時時時

，，，，可簡化成可簡化成可簡化成可簡化成

if(條件式條件式條件式條件式)

statement ;

Question:
if (條件式條件式條件式條件式) ;
printf(“This is a test.\n”);

執行結果是??

Outline
28

© Copyright by Deitel

25 ifififif ((((num1 < num2num1 < num2num1 < num2num1 < num2) {) {) {) {

26 printf(printf(printf(printf("%d is less than %d"%d is less than %d"%d is less than %d"%d is less than %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

27 } } } } /* end if *//* end if *//* end if *//* end if */

28

29 ifififif ((((num1 > num2num1 > num2num1 > num2num1 > num2) {) {) {) {

30 printf(printf(printf(printf("%d is greater than %d"%d is greater than %d"%d is greater than %d"%d is greater than %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

31 } } } } /* end if *//* end if *//* end if *//* end if */

32

33 ifififif ((((nunununum1 <= num2m1 <= num2m1 <= num2m1 <= num2) {) {) {) {

34 printf(printf(printf(printf("%d is less than or equal to %d"%d is less than or equal to %d"%d is less than or equal to %d"%d is less than or equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

35 } } } } /* end if *//* end if *//* end if *//* end if */

36

37 ifififif ((((num1 >= num2num1 >= num2num1 >= num2num1 >= num2) {) {) {) {

38 printf(printf(printf(printf("%d is greater than or equal to %d"%d is greater than or equal to %d"%d is greater than or equal to %d"%d is greater than or equal to %d\\\\n"n"n"n", num1, num2);, num1, num2);, num1, num2);, num1, num2);

39 } } } } /* end if *//* end if *//* end if *//* end if */

40

41 returnreturnreturnreturn 0000; ; ; ; /* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully *//* indicate that program ended successfully */

42

43 } } } } /* end function main *//* end function main *//* end function main *//* end function main */

fig02_13.c (Part 2
of 2)

Program Output

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Outline
29

© Copyright by Deitel

Program Output
(continued)

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

30

© Copyright by Deitel

More on if Statements

if(條件式條件式條件式條件式)

{

statement 1;

statement 2;

statement 3;

}

if(條件式條件式條件式條件式)

statement 1;

statement 2;

statement 3;

if(條件式條件式條件式條件式) ;

statement 1;

statement 2;

statement 3;

if(條件式條件式條件式條件式)

{

statement 1;

statement 2;

}

statement 3;

31

© Copyright by Deitel

2.6 Decision Making: Equality and
Relational Operators

32

© Copyright by Deitel

Keywords

33

© Copyright by Deitel

2.7 Data Types and Variables (補充補充補充補充)

• C’s Fundamental Data Type
– int Integral numbers such as 1, 2, 3 and so on

– float Low/medium precision real numbers

– double Medium/high precision real numbers

– char Text characters such as ‘a’, ‘b’, ‘@’ and so on

• C’s Modified Data Type
– short int small to medium sized integral numbers

– long int Medium to large sized integral numbers,
such as -245 563, 123 456

– long double Medium/high value/precision real
numbers such as 2.0x102310

34

© Copyright by Deitel

/* SIZEOF.C--Program to tell the size of the C vari able */
/* type in bytes */

#include <stdio.h>

main()
{

printf("\nA char is %d bytes", sizeof(c har));
printf("\nAn int is %d bytes", sizeof(int));
printf("\nA short is %d bytes", sizeof(s hort));
printf("\nA long is %d bytes", sizeof(l ong));
printf("\nAn unsigned char is %d bytes", sizeof(u nsigned char));
printf("\nAn unsigned int is %d bytes", sizeof(unsi gned int));
printf("\nAn unsigned short is %d bytes", sizeof(u nsigned short));
printf("\nAn unsigned long is %d bytes", sizeof(u nsigned long));
printf("\nA float is %d bytes", sizeof(f loat));
printf("\nA double is %d bytes", sizeof(d ouble));
printf("\nA long double is %d bytes\n", sizeof(long double));

return 0;
}

A char is 1 bytes
An int is 4 bytes
A short is 2 bytes
A long is 4 bytes
An unsigned char is 1 bytes
An unsigned int is 4 bytes
An unsigned short is 2 bytes
An unsigned long is 4 bytes
A float is 4 bytes
A double is 8 bytes
A long double is 8 bytes - for Visual C++ Comp iler
A long double is 10 bytes - for Borland Compile r

35

© Copyright by Deitel

Typical Size and Range of Data Types
For Borland Compiler

Data Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max Value

char 1 char 1 char 1 char 1 ----128 127128 127128 127128 127

short short short short intintintint 2 2 2 2 ----32768 3276732768 3276732768 3276732768 32767

intintintint 4 4 4 4 ----2147483648 21474836472147483648 21474836472147483648 21474836472147483648 2147483647

long long long long intintintint 4 4 4 4 ----2147483648 21474836472147483648 21474836472147483648 21474836472147483648 2147483647

float 4 1.17549efloat 4 1.17549efloat 4 1.17549efloat 4 1.17549e----38 3.40282e+3838 3.40282e+3838 3.40282e+3838 3.40282e+38

double 8 2.22507edouble 8 2.22507edouble 8 2.22507edouble 8 2.22507e----308 1.79769e+308308 1.79769e+308308 1.79769e+308308 1.79769e+308

long double 10 3.3621elong double 10 3.3621elong double 10 3.3621elong double 10 3.3621e----4932 1.18973e+49324932 1.18973e+49324932 1.18973e+49324932 1.18973e+4932

For Visual C++ and C Compiler

Data Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max ValueData Type Size Bytes Min Value Max Value

char 1char 1char 1char 1 ----128 127128 127128 127128 127

short short short short intintintint 2222 ----32768 3276732768 3276732768 3276732768 32767

intintintint 4444 ----2147483648 21474836472147483648 21474836472147483648 21474836472147483648 2147483647

long long long long intintintint 4 4 4 4 ----2147483648 21474836472147483648 21474836472147483648 21474836472147483648 2147483647

float 4float 4float 4float 4 1.17549e1.17549e1.17549e1.17549e----38 3.40282e+3838 3.40282e+3838 3.40282e+3838 3.40282e+38

double 8double 8double 8double 8 2.22507e2.22507e2.22507e2.22507e----308 1.79769e+308308 1.79769e+308308 1.79769e+308308 1.79769e+308

long double 8 2.22507elong double 8 2.22507elong double 8 2.22507elong double 8 2.22507e----308 1.79769e+308308 1.79769e+308308 1.79769e+308308 1.79769e+308

1 byte, 28 = 256

2 bytes, 216 = 65536

4 bytes, 232 = 4294967296

36

© Copyright by Deitel

Errors in Addition of Two Large Integers
/* IntegerError.c

Error in large integer addition
Overflow in integer addition
IntegerError.c

*/

#include <stdio.h>

int main()
{ int A1, A2, A3, B1, B2;

A1 = 1500000000;
A2 = 1500000000;
A3 = 500000000;

B1 = A1 + A2;
B2 = A1 + A3;

printf("A1 + A2 = %d + %d = %d\n", A1, A2, B1);
printf("A1 + A3 = %d + %d = %d\n", A1, A3, B2);

return 0; /* indicates successful termination */

} /* end main */

A1 + A2 = 1500000000 + 1500000000 = -1294967296

A1 + A3 = 1500000000 + 500000000 = 2000000000

37

© Copyright by Deitel

Conversion between Types
/*Test integer/float Conversion by calculating 5/3 + 4 testIntFloat.c */

#include <stdio.h>

int main()

{ int A1, A2, A3;

float B1, B2, B3, B4, B5, B6, B7, B8, B9, B10;

A1 = 3;

A2 = 5;

A3 = 4;

B1 = A2/A1 + A3;

B2 = A2/3.0 + A3;

B3 = (float)A2/(float)A1 + A3;

B4 = (float)A2/A1 + A3 ;

B5 = A2/(float)A1 + A3 ;

B6 = A2/A1 + (float)A3 ;

B7 = (float)A3 + A2/A1 ;

B8 = (float)(A2/A1) + A3 ;

B9 = A3 + (float)A2/A1 ;

B10= A2/A1*(float)A1 + A3;

printf(" A1 = 3 ; A2 = 5 ; A3 = 4 \n\n");

printf(" A2/A1 + A3 = %f\n", B1);

printf(" A2/5.0 + A3 = %f\n", B2);

printf(" (float)A2/(float)A1 + A3 = %f\n", B3);

printf(" (float)A2/A1 + A3 = %f\n", B4);

printf(" A2/(float)A1 + A3 = %f\n", B5);

printf(" A2/A1 + (float)A3 = %f\n", B6);

printf(" (float)A3 + A2/A1 = %f\n", B7);

printf(" (float)(A2/A1) + A3 = %f\n", B8);

printf(" A3 + (float)A2/A1 = %f\n", B9);

printf(" A2/A1*(float)A1 + A3 = %f\n", B10);

return 0; /* indicates successful termination */

} /* end main */

Outputs:

A1 = 3 ; A2 = 5 ; A3 = 4

A2/A1 + A3 = 5.000000

A2/3.0 + A3 = 5.666667

(float)A2/(float)A1 + A3 = 5.666667

(float)A2/A1 + A3 = 5.666667

A2/(float)A1 + A3 = 5.666667

A2/A1 + (float)A3 = 5.000000

(float)A3 + A2/A1 = 5.000000

(float)(A2/A1) + A3 = 5.000000

A3 + (float)A2/A1 = 5.666667

A2/A1*(float)A1 + A3 = 7.000000

38

© Copyright by Deitel

Variables

A variable is a named data storage location in your
computer's memory. By using a variable's name in your
program, you are, in effect, referring to the data stored
there. Every variable has a name, a type, a size and a value

Variable Names
To use variables in your C programs, you must know
how to create variable names. In C, variable names
must adhere to the following rules:

– The name can contain letters, digits, and the underscore
character (_).

– The first character of the name must be a letter. The underscore
is also a legal first character, but its use is not recommended.

– Case matters (that is, upper- and lowercase letters). Thus, the
names count and Count refer to two different variables.

– C keywords can't be used as variable names. A keyword is a
word that is part of the C language.

39

© Copyright by Deitel

Some Examples of Legal and Illegal C
Variable Names

Illegal: First character is a digit 9winter

Illegal: Is a C keyword double

Illegal: Contains the illegal character # savings#account

Legal but not advised _1990_tax

Legal annual_profit

Legal, but not advisedy2x5__fg7h

Legal Percent

LegalityVariable Name

Because C is case-sensitive, the names percent, PERCENT, and Percentwould be
considered three different variables. For many compilers, a C variable name can be
up to 31 characters long. (It can actually be longer than that, but the compiler looks at
only the first 31 characters of the name.) With this flexibility, you can create variable
names that reflect the data being stored.

40

© Copyright by Deitel

More on printf() Conversion Specifiers
(Read Sec. 5.6 for Details)

The format string must contain one conversion specifier for each printed variable.
printf() then displays each variable as directed by its corresponding conversion
specifier. For example, if you're printing a variable that is a signed decimal integer (types
int and long), use the %dconversion specifier. For an unsigned decimal integer (types
unsigned int and unsigned long), use %u. For a floating-point variable (types float and
double), use the %f specifier.

1.23457e+006float, doubleFloating-point value in f or e (or E) form,
whichever is shorter%g or %G

1.234568e+006;
1.234568E+006float, doubleFloating-point value in exponential notation%e or %E

1234

1234

This is a test

1234567.890000;
1234567.890

1234567.890

1234

1234

A

Examples

unsigned long Unsigned long decimal integer %lu

unsigned int, unsigned short Unsigned decimal integer %u

char arrays Character string %s

float, double Decimal floating-point number
%f or
%.3f or
%15.3f

long Signed long decimal integer %ld

int, short Signed decimal integer %d

char Single character %c

Types Converted MeaningSpecifier

41

© Copyright by Deitel

/* printf_format testing */
/* Printing floating-point numbers with

floating-point conversion specifiers */

#include <stdio.h>

int main()
{ float test1;

double test2;

test1 = 1234567.890123456789;
test2 = 1234567.890123456789;

printf("%f\t%f\n", test1,test2);
printf("%.3f\t%.3f\n\n", test1,test2);
printf("%.8f\t%.8f\n\n\n", test1,test2);
printf("%e\t%e\n", test1,test2);
printf("%E\t%E\n\n", test1,test2);
printf("%.4e\t%.4e\n\n", test1,test2);
printf("%.10e\t%.10e\n\n\n", test1,test2);
printf("%g\t%g\n", test1,test2);
printf("%G\t%G\n", test1,test2);

return 0; /* indicates successful termination */

} /* end main */

42

© Copyright by Deitel

Outputs F ormat Specifiers

1234567.875000 1234567.890123 "%f\t%f\n"
1234567.875 1234567.890 "%.3f\t%.3f\n\n"

1234567.87500000 1234567.89012346 "%.8f\t%.8f\n\n\n"

1.234568e+006 1.234568e+006 "%e\t%e\n"
1.234568E+006 1.234568E+006 "%E\t%E\n\n"

1.2346e+006 1.2346e+006 "%.4e\t%.4e\n\n“

1.2345678750e+006 1.2345678901e+006 "%.10e\t%.10e\n\n\n"

1.23457e+006 1.23457e+006 "%g\t%g\n"
1.23457E+006 1.23457E+006 "%G\t%G\n"

43

© Copyright by Deitel

Case Study – Converting Miles to Kilometers
• Steps to write a program

– Define the problem to be solved with the computer
– Design the program’s input/output (what the user should give/see)
– Break the problem into logical steps to achieve this output
– Write the program (with an editor)
– Compile the program
– Test the program to make sure it performs as you expected

• Problem:
– Convert Miles to Kilometers

• Problem Input/Output
– miles /* the distance in miles */
– kms /* the distance in kilometers */

• Algorithm (演算法、演算步驟)
– Get the distance in miles
– Convert the distance to kilometers

• The distance in kilometers is 1.609 times the distance in miles
– Display the distance

• Write the problem

44

© Copyright by Deitel

Case Study – Converting Miles to Kilometers
/*

* program Mile2Km.c
* Converts distance in miles to kilometers.
*/

#include <stdio.h> /* printf, scanf definitions */

int main()
{

float miles, /* input - distance in miles. */
kms, /* output - distance in kilometers */
kms_per_mile; /* conversion constant */

/* Get the distance in miles. */
printf("Enter the distance in miles> ");
scanf("%f", &miles);

/* Convert the distance to kilometers. */
kms_per_mile = 1.609;
kms = kms_per_mile * miles;

/* Display the distance in kilometers. */
printf("That equals %f kilometers.\n", kms);

return 0;
}

45

© Copyright by Deitel

Case Study – Converting Miles to Kilometers
• Compile the program

– Using Visual C++ or any ANSI-C Compiler

– If something goes wrong during compiling – syntax errors?

• Testing

– To verify the program works properly, enter a few test values of miles (e.g., 10.0
miles).

– If something goes wrong during executing (running) the program – logical errors?

46

© Copyright by Deitel

Exercises
2.7Identify and correct the errors in each of the following statements
(Note: there may be more than one error per statement):
a) scanf("d", value);
ANS: scanf(“ %d”, &value);
b) printf("The product of %d and %d is %d"\n, x, y);
ANS: printf("The product of %d and %d is %d \n" , x, y , z);
c) firstNumber + secondNumber = sumOfNumbers
ANS: sumOfNumbers = firstNumber + secondNumber;
d) if (number => largest)

largest == number;
ANS: if (number >= largerst)

largest = number;
e) */ Program to determine the largest of three int egers

/*
ANS: /* Program to determine the largest of three integers

*/

47

© Copyright by Deitel

Exercises
2.7Identify and correct the errors in each of the following statements
(Note: there may be more than one error per statement):

f) Scanf("%d", anInteger);

ANS: scanf("%d", &anInteger);

g) printf("Remainder of %d divided by %d is\n", x, y, x %
y);

ANS: printf("Remainder of %d divided by %d is %d\n", x, y,
x % y);

h) if (x = y);

printf(%d is equal to %d\n", x, y);

ANS: if (x == y) /* ; removed */

printf(" %d is equal to %d\n", x, y);

i) print("The sum is %d\n," x + y);

ANS: printf ("The sum is %d\n ", x + y);

j) Printf("The value you entered is: %d\n, &value);

ANS: printf("The value you entered is: %d\n " , value);

48

© Copyright by Deitel

Review

• In this chapter, you have learned:
– To be able to write simple computer programs in C.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

– To understand computer memory concepts.

– To be able to use arithmetic operators.

– To understand the precedence (order of evaluation) of
arithmetic operators.

– To be able to write simple decision making statements.

– To understand C’s fundamental and modified data types

